Prime coprime graph of a finite group

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the coprime graph of a group

the coprime graph $gg$ with a finite group $g$‎ ‎as follows‎: ‎take $g$ as the vertex set of $gg$ and join two distinct‎ ‎vertices $u$ and $v$ if $(|u|,|v|)=1$‎. ‎in the paper‎, ‎we explore how the graph‎ ‎theoretical properties of $gg$ can effect on the group theoretical‎ ‎properties of $g$‎.

متن کامل

a note on the coprime graph of a group

in this paper we study the coprime graph of a group $g$. the coprime graph of a group $g$, is a graph whose vertices are elements of $g$ and two distinct vertices $x$ and $y$ are adjacent iff $(|x|,|y|)=1$. in this paper we classify all the groups which the coprime graph is a complete r-partite graph or a planar graph. also we study the automorphism group of the coprime graph.

متن کامل

Recognition of the group $G_2(5)$ by the prime graph

Let $G$ be a finite group. The prime graph of $G$ is a graph $Gamma(G)$ with vertex set $pi(G)$, the set of all prime divisors of $|G|$, and two distinct vertices $p$ and $q$ are adjacent by an edge if $G$ has an element of order $pq$. In this paper we prove that if $Gamma(G)=Gamma(G_2(5))$, then $G$ has a normal subgroup $N$ such that $pi(N)subseteq{2,3,5}$ and $G/Nequiv G_2(5)$.

متن کامل

On the planarity of a graph related to the join of subgroups of a finite group

‎Let $G$ be a finite group which is not a cyclic $p$-group‎, ‎$p$ a prime number‎. ‎We define an undirected simple graph $Delta(G)$ whose‎ ‎vertices are the proper subgroups of $G$, which are not contained in the‎ ‎Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge‎ ‎if and only if $G=langle H‎ , ‎Krangle$‎. ‎In this paper we classify finite groups with planar graph‎. ‎...

متن کامل

ON COMPOSITION FACTORS OF A GROUP WITH THE SAME PRIME GRAPH AS Ln(5)

The prime graph of a finite group $G$ is denoted by$ga(G)$. A nonabelian simple group $G$ is called quasirecognizable by primegraph, if for every finite group $H$, where $ga(H)=ga(G)$, thereexists a nonabelian composition factor of $H$ which is isomorphic to$G$. Until now, it is proved that some finite linear simple groups arequasirecognizable by prime graph, for instance, the linear groups $L_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Novi Sad Journal of Mathematics

سال: 2021

ISSN: 1450-5444,2406-2014

DOI: 10.30755/nsjom.11151